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Abstract A non-standard way of representing an evolution equation in the form of a system 
is proposed. This representation allows us to investigate all the different classes of third-order 
integrable evolution equations simultaneously. Using this approach, a preliminary classification 
of these equations is made. 

1. Introduction 

The goal of this paper is to give a preliminary classification of the integrable equations of 
the form 

w, = Htx, w ,  wx, WLr.  w x d  (1) 

based on its representation as a system 

The complete classification of integrable equations ( I )  involves a huge number of 
computations and is, therefore, a very difficult task. Representation (2H4) allows these 
computations to be reduced by several times. We think that using this approach, the 
classification problem could be performed in its entirety. 

Relations (2) are an under-determined system of ordinary differential equations with a 
number of equations equal to the number of unknowns minus one. A known example [I]  
is the Cartan-Hilbert equation p. = q:x, which can be written in the form 

q = U I  q x  = 02 P = U3 P x  = U 

(UdX = VZ ( u 2 ) x  = 1/; @3)x = U 

Relations (3) and (4) can be considered [2] as an infinitesimal symmetry of (2). 
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The system ( 2 x 4 )  admits several interpretations. For example, we can consider the 
variables vi as non-local (if U, = U then U = S U dx) .  Or we can see (2) as a differential 
constraint on the system of evolution equations (3) and (4). A third point of view, if 
equation (4) does not depend on v i ,  is to view (2) and ( 3 )  as a pseudopotential of (4) in the 
sense of Wahlquist-Estabrook [3]. 

With the help of local invertible tramformationsf it is sometimes possible to eliminate 
(2) and reduce the system ( 2 x 4 )  to only one evolution equation 

wZ = H ( x .  w ,  wX.  ... ). (5) 

The Cartan-Hilbert’s equation gives us one of the simplest examples of constraints that 
cannot be eliminated by invertible transformations. 

One of the main aims of this work is to demonstrate that it is often very useful to 
replace evolution equation (5) by its equivalent system ( 2 x 4 ) .  

Example 1. Let us consider the following integrable equation 

I12 
we obtain wxxx 3 

wx 2 w: 

Why is the form (7)-(9) more convenient than equation (6)? Two reasons can be 
noted. The first is a practical one. The system becomes quasipolynomial1 even though 
(6) is not quasipolynomial. In the search for such important properties such as higher 
symmetries, conservation laws, zero-curvature representation, pseudopotentials, etc. very 
heavy computations must be done. The use of computer algebra becomes necessary and if 
the functions involved are quasipolynomial, the computation is much more productive than 
in the case of algebraic functions. 

t The invertible transformations and symmetries for system (2) have been investig3ted in detail in [Z] (see also 
Ill). 
t By quasipolynomial we mean an algebraic sum of terms of the form a;’ . . . x F ,  where c. m i ,  . . . , m, are 
mllstmts. 
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The second reason is a theoretical one. It turns out that the transition to system (2H4) 
allows a unification of different classes of evolution equation. This becomes very useful in 
the classification of integrable equations. It is known [4] that integrable evolution equations 
of the form (1) must have one of the following dependences on the third derivative wIxx: 

(10) 

(11) 

(12) 

WI = flwzxx + f 2  

WI = ( f i  w,,, + f 2 ) r 2  + f 3  

W I  = ( 2 f I W Z X Z  + f 2 ) ( f i W L  + fzwxxx + f3)-'12 + f4 
where fi = f i ( x ,  w .  w,, wXI). Equation (6) in example 1 belongs to class (12). 

equation (l), we will always choose 
In order to construct what we will call the associated system (2)-(4) for the general 

and 

V I  = w ,  . . . , U. = w I . . . I  
v 

1.1 

where n is the order of the function U in the highest derivative of W .  It turns out that after 
such a choice of U ,  the associated systems for (lOt(12) are very similar in spite of the very 
different forms of the original equations. Expression (13) often appears in work concerning 
integrable equations of type (1). But the fact that, if we use (13) the right-hand side of 
the associated system always becomes quasipolynomial, is still a mystery to us. A rigorous 
description of the construction of the associated system can be found in the appendix. 

If n e 3 then equation (1) is quasilinear, i.e. it has the form (10). For quasilinear 
equations of the form 

Wt = a ( x ,  w)wxxx + B ( x ,  w .  wx, wxx) (14) 

we have n = 0, so the vi are absent. In the cases n = 1 and n = 2, the equations reduce 
to the form 

w, = a ( x ,  w ,  W h J U  + B ( x ,  w ,  WL, W * d  

w ,  = a ( x .  w ,  w,, wxx)wxxx + B ( x ,  w ,  wx, WXJ 

(15) 

(16) 

respectively. For equations of the form 

wt = a(x)wxxx + B ( x ,  w .  w,. w z d  (17) 

U depends only on x and it is not a valid dynamical variable. Nevertheless, we can construct 
an associated system for them in the following way. Two equations can be considered 
equivalent if there exists a point transformation transforming one into the other. Performing, 
for instance, a transformation such as i = w ,  tZ = x ,  equation (17) can be brought into an 
equation of type (15). Finally, for non-quasilinear equations, n = 3 (cf example 1). 
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It is clear that the source equation (1) turns into the first equation of system (3). Our 
crucial idea is to concentrate on equation (4) instead of the source equation. In all integrable 
cases we will see that, for any n, equation (4) has the unique form 

Moreover, in terms of the vector fields 

a n a  " a  
a vi a vi ax  i=l 

Q=-++Cj- G = C G f -  
i = l  

where 0; and Gi are the functions in (2) and (3), all formulae concerning equation (1) for 
all cases (10H12) can be written in a unified way. 

2. Integrability conditions 

In  recent years the problem of classifying integrable partial-differential equations has 
received considerable attention. There are several ways of defining integrability: using 
generalized symmetries, conservation laws, Painlevt test and so on. These approaches have 
been discussed in [5 ] ,  where references can be found. 

In this paper we use the approach of a canonical series of conservation laws [4,6-8]. 
For any integrable equation there exists a sequence of so-called canonical local conservation 
laws 

= (U,)x i = 1,2, .  . . . (20) 

The canonical densities pi can be expressed explicitly in terms of the right-hand side of 
the equation and the fluxes uj and j = 1, . . . , i - 1. The mechanism for obtaining such 
formulae is described in detail in [9l. For a system of type (2H4), this mechanism was 
generalized in [2]. The first five canonical densities, calculated in this way for the system 
associated with (l), are given by 

PI = U  (21) 

aip 

au P5 = U03 - p3u1 - 3 - ( F )  
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Here, and in what follows, vector notation will be used. Thus, the associated system (2)-(4) 
has the form 

where v = ( x ,  q,.. . , U,,) and 

* = ( 1 ,  @ I , .  .., '3") G = (0, G I , .  . . , G - ) .  (29) 

Sometimes we will identify these vectors with their vector field counterparts (19), hoping 
that this will not lead to confusion. 

In this paper the fact that expressions (21H23) must be densities of local conservation 
laws is exploited; this implies shong restrictions on the form of the functions +, F and G 
in the right-hand side of the associated system (26x28) .  Step by step, we will determine 
their dependence on uIxx,  U,,, etc. 

In the first step of this sharpening process, we take into account the condition that 
PI = U must be a conserved density according to (21). This means that 

F = ( ~ ~ ( ~ , ~ , u x r ~ x i ) ) r .  

On the other hand, as is proven in the appendix (cf (73)), with the chosen form of if given 
by (13), F must be of the form F = u - ~ u , , ,  + lower terms. Thus 

(30) 

This formula describes the dependence of F in  U,, and u x x ,  Using the Compatibility 
conditions 

3 F = ( U -  uxx + f(v.  U ,  uAL. 

(G)x = (*It (31) 

that must hold between (26) and (27), we are led to 

Therefore 

The general procedure to further determine the integrable equations is comprised by steps 
analogous to the one outlined above. In each step, one of the integrability conditions (20) 
firstly allows the form of F to be refined. Secondly, compatibility condition (31) is used to 
refine the form of G and -3. 

In the first step of our procedure, we used the first canonical density pl = U. In the 
second step, we are going to consider the second canonical density m = u3(aF/au,) .  But 
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first, it is useful to derive some formulae concerning the form of a general conservation law 
(26H28). 

The fact that the integrability conditions have the form of a conservation law leads us to 
study this notion more deeply. A local conservation law for the associated system (26)-(28) 
is an expression of the form 

R Hentrindez Heredero et aI 

( P ( V ,  U, U,, ... )It = ( u ( v ,  U, U,, . . . ) )x  (33) 

which must hold over all the solutions of (26H28). Or, equivalently, (33) must be an 
identity in the variables v, U ,  ux. u x I , .  . . , when we eliminate all derivatives with respect to t 
using (27)-(28). The functions p and U are called the density and flux of the conservation 
law, respectively. From a conservation law (PI), = (u,)~, we obtain another conservation 
law (&)t = ( ~ 2 ) ~  putting & = PI + and uz = ut + +,, where 6 is an arbitrary function 
4(v, U. u x ,  . . .). We will say that these conservation laws are equivalent and write 

PI - PZ. (34) 

It is easily verified that any conserved density is equivalent to one of the form p = R ( v ,  U )  
or one of the form 

where, for brevity, we denote by qm) the derivative U . The number m is called the 

The usual way of eliminating the function U from a conservation law is to use the 
variational derivative [IO]. The variational derivative of a total x-derivative is zero and 
the conservation law can be written only in terms of p. However, here we prefer a more 
straightforward approach to restrict the form of a conserved density of (26)-(28). 

Let R be a function as in (35). Then ( R ) ,  must be a total x-derivative. After a short 
calculation, we obtain that ( R ) ,  depends linearly on u(,+g), but we can subtract some total 
derivative of a function of order m + 2 to get 

w 
I d n n  order of the conserved density. 

where ri = Ti (% U, u x ,  . . . ,U(,,,)). The right-hand side of (36) must be linear in U(,,,++ so 
we have iJ3R/au:,,,) = 0, i.e. R = AIL:,,,) + B q , )  + C. Calculating again 

(R), - (3(% - l ) ~ - ~ A u ,  + ~ u - ~ A ,  - 2A - + T I U ( , , , + I )  + 70. (37) 

This formula implies a relationship between A ( v ,  U ,  u x , .  . . , u(, , , -~))  and the right-hand side 
of (30) 

an, a f  1 

(38) 
a f  
au, 
- = $(2m - W 4 u ,  + $ u - ~ A - ' A , .  
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Now we can proceed with the second step in the procedure, calculating the integrability 
conditions (20). The second canonical density is 

so pz is of order m = 1 whenever (a3f/au:) # 0. In this case, relation (38) with m = 1 
shows that u3(af/au,) is a total x-derivative so we must have (a3f/au:) = 0, arriving at 
a contradiction. Hence, f is quadratic in U,. We will use the notation 

f = -  ~ ~ ~ 1 1 :  + ( 2 0 ( p )  -~ + E)u-'u, + q (40) a u  
with p = p(w, U). q = q ( w ,  U) and E = E(w,  U). This notation is convenient since the 
second canonical density (39) is, up to a total x-derivative, equal to E. 

In the third step of the procedure, the third integrability condition (23). in conjunction 
with the compatibility conditions, allow the right-hand sides of equations (27) and (28) to 
be stated precisely as follows 

where 

P = cr(v)u2 + B(w)u + y y = constant (43) 

is a quadratic polynomial, defined up to a multiplicative constant. 
Let us make some remarks about the function E(w, U). If there exists some conserved 

density of order m 2 1 then we see from (38)-(40) that, without losing generality, we can 
take E = 0. From the integrability condition of p2, we obtain 

From the integrability condition of p3 and (37). we conclude that E and the polynomial P 
are connected by 

y E = O .  (45) 

The dependence of 0 on U can also be found from the compatibility condition (31). It 
is determined by the relations 

The preliminary classification is performed by studying the different solutions of 
equations (46) and (47) which lead to different classes of integrable equations. 
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3. Preliminary classification 

To start the classification, the easiest way is to solve (46). In the generic case, the solution 
is ip = (P’/’)@2 + uipl + ipo, In the degenerate case P = (au + b)’ we obtain two more 
types of solution corresponding to a = 0 and a # 0. Therefore, we obtain three types of 
solutions of (46) related to the different dependences on U of -3: 

R Heridndez Heredero et a1 

@ = (LY(v)uZ + P(w)u + Y ) I / * i p Z ( U )  + U i p l ( V )  + @O(U). (50) 

Let us first study the case (48). Here, P =constant = y # 0. Then, according to (43, 
E = 0. Substituting ip in (47) and equating the coefficients of the different powers of U to 
zero, we obtain the conditions 

[*‘1,*21=0 [ipo,-3lI=o. (51) 

In order to investigate these conditions, we must take into account the structure of the vector 
field ip in (19). Since u1 = w and U* = w,, . . . , this vector field has the form 

Hence, vector fields a; are of the form 

If [GO, -311 = 0 then the explicit form of the vectors requires either n < 2 or ip, = 0. If 
n c 2 we have a quasilinear equation of type (14) or (15). The case ipl = 0 corresponds 
to the generic case 

ip = U*ip’(V) + ipo(v) P = 1 E = O  (56) 

Analogously, studying the remaining types of solutions (49) and (50), we obtain some 
to which example 1 belongs. 

cases with n c 2 and two additional generic cases 

ip = U i p I ( W )  + P = u%(v) E = E @ )  (57) 

-3 = P’/’ ip , (v)  + &(v) P = u28(w) - 1 E = 0. (58) 

We must note that in these three generic cases, any value for n < 3 is possible. 
Now we show some examples with equations of the quasilinear types (14)-(16) and 

fully nonlinear equations corresponding to the three generic cases. In all of them, q = 0 
and T = 0. 
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The next equations are examples belonging to case (56) Examples of the generic case (56). 
and, for all of them, the t-evolution of U, given by (41). is U, = ( U - ~ U ~ ~  - Iu 3 -4 uz),. 2 

wt = (w-  3 wzx - ;w-4w3z 

W I  = w;,)/2w,,, 

w, = -2w;;i2. 

-3f2 3 -5/2 2 wt = w, W l l X  - i w x  wxx 

Examples of the generic c u e  (57). In these examples P = U', E = 0 and (41) is 
U, = (u-3uxx - 9" 3 -4 ux), .  2 

wt = (w-3wxx - 3w- 4 2  wx) ,  

- 4 2  wt = w;3wxx* - 3w, w,, 
-3 

I -2 

W l  = wxx w x x ,  

wt = -5wxxx. 

Equations (59) and (60) can be transformed using a contact transformation to the linear 
equation wy = wrxx. 

Examples of the generic case (58) 

w, = (w-  3 w*, - ;w-4(w2 - 1)-'(2wZ - l)w;)x 

= (w: + 1 ) - 3 / 2 ~ , , ,  - 3(w: + 1)- 5 / 2  w,, 2 

wf = (& + 1)-3/zw,, ,  -3(& + 1)- 512 wxx 2 

Here P = u2 - 1 and (41) is ut = ( u - ~ u , , ~ u  2 -4 (U 2 - 1)-'(2u2 - 1 ) ~ : ) ~ .  

2 wr = (w,,, + 

Besides the three generic cases, there are several special quasilinear cases with n < 2. It 
is easy to see that any equation of the form (14), (15) and (17) can be reduced by a contact 
transformation to the form (16) and then, without loss of generality, it can be thought that 
any integrable equation of the form (1) belongs to one of the generic cases (56x58). 
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Appendix. Non-standard dynamical variables 

In this appendix we will use the notation 

R Hernrindez Heredero et a1 

a i w  

ax1 
wj = - 

to stress the fact that in the algebraic study of an evolution equation 

aw ( a x  axn 
w , = H  x , w , -  ( . . . ,  ””) 

these partial derivatives are regarded as independent variables (cf (33)). We will call the set 
x ,  w, w1, . . . , w i ,  . . . the standard set of independent variables for (61). In terms of these 
variables, the evolution equation (61) is a pair of compatible infinite dynamical systems of 
equations 

(XI, = 1 (w i ) ,  = wit1 (62) 

(X)c  = 0 ( ~ i ) ~  = D’(H(x, w , w ~ ,  . . . , ~ 1 ) )  i = 0, 1 , .  . , (63) 

where 

is the total derivative with respect to x .  

of variables in the systems (62x633, namely to the new set of independent variables 
Formally, the transition from evolution equation (61) to the associated system is achange 

x ,  w, W l .  .. . , W n - l .  U ,  Ul, .. . (64) 

where 

a Q  - # 0. U = Q(x, W ,  W I ,  . . ., w“) 
awn 

It is clear that uj = D’(Q).  This change from standard to non-standard variables 
is invertible. In fact, from equation (65). w,, can be expressed in the variables 
x ,  w ,  W I , .  .., W p l ,  U :  

W, = R ( x ,  W ,  W I , .  .. , ~ ~ - 1 . u ) .  (66) 

In order to express wntl in non-standard variables x ,  w .  w,, . . . , U).-,, U, U [ ,  we have to 
apply the total derivative operator D to (66): 

(67) 
aR aR aR aR a R  

W.+I = - + W ]  - + . . . + w,-, - t wn- + U l -  
a U  awn-,  ax  aw 
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replacing w, by R. We can express the variables wi with i > n + 1 analogously 

wn+l = D'(R) (68) 

where 

is the total derivative with respect to x in the non-standard variables. The map between 
standard and non-standard variables is now completely described and routine calculations 
allow all objects such as vector fields, symmetries, conservation laws, etc to be rewritten. It 
is, in fact, an algorithmic procedure which can be implemented in computer algebra systems. 
We have implemented this on the MATHEMATICA package, which was used to perform the 
calculations involved in this paper. 

It is easy to see that the infinite system (62H63) is thus rewritten in non-standard 
variables as 

To find the explicit form of G we replace w,, w"+~,  . . . , wk in the right-hand side of (61) 
using (68). To obtain F we can differentiate equation (65) with respect to t 

a Q  a Q  ut = -(wn), + lower terms = -D"H + lower terms 
awn awn 

wt+" + lower terms 
a Q  aH 
awn awk 

= _ _  

and differentiating (65) i times with respect to x 

a Q  ui = -w;+" + lower terms 
awn 

Therefore, w;+~  = (aQ/aw,)-'u; + . and 

aH 
awk 

F = -uk +lower terms. 
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